INTRODUCTION

e Purpose and Contents of this Course: Design and analysis of algorithms

e Definition of Algorithms:

— A precise statement to solve a problem on a computer

— A sequence of definite instructions to do a certain job

e Characteristics of Algorithms and Operations:

Definiteness of each operation (i.e., clarity)
— Effectiveness (i.e., doability on a computer)

— Termination

An algorithm has zero or more input and one or more output

e Functions and Procedures:

— Functions: Algorithms that returns one output

— Procedures: algorithms that execute a certain job but does not return any output.

In actuality, procedures can produce a number of outputs as output parameters.

e Design of Algorithms:

— Devising the algorithm (i.e., method)
— Expressing the algorithm (computer language)

— Validating the algorithm (proof of correctness)

e Analysis:

— Determination of time and space (memory) requirements

e Implementation and Program Testing: Outside the scope

e Devising: Through some algorithmic techniques

— Divide and conquer

The greedy method
— Dynamic programming

— Graph search methods

Backtracking

Branch and bound

Expression of Algorithms: (Pseudo language)

e Variable declaration:
integer x, y; real x, y; boolean a, b; char c,d;

datatype x; (generic)

e Assignment:
X := EXPRESSION; (or X < EXPRESSION)

Examples: x <+ 1 + 3;y := a*y+2;

e Control structures:
if condition then
a sequence of statments;
else

a sequence of statements;

endif

while condition do

a sequence of statements;

endwhile ;

loop
a sequence of statements;

until condition;

for i=n; to ny [step d]
a sequence of statements;

endfor
goto Label

Case statement (generalization of if then else):
Case :
condl: statl,

cond2: stat2;

condn: statn;
default: stat;
endcase
e Input-Output:
read (X); /*X is a variable or an array*/

print (data) or print (sentence);

e Functions and Procedures:

Function name(parameters)

begin
variable declarations;
body of statements;
return (value);

end

Procedure name(parameters)
begin
variable declarations;
body of statements;

end

e Examples:

Function max(A(1:n))
begin
datatype x; /* holds the max so far*/
integer i;
x = A[l];
for i =2 tondo
if x < A[i] then

x = Afi];
endif
endfor
return (x);
end max;

Procedure swap(x,y)

begin
datatype temp;
temp := x;
X:=y;

y = temp;

end swap;

RECURSION

e A recursive algorithm is an algorithm that calls itself on less input

e Structure of recursive algorithms:

Algorithm A (input)

begin
basis step; /*for minimum size input®/
call A(smaller input); /*recursive step*/
/*perhaps more recursive calls*/
combine sub-solutions;

end ;

e Example:

Function max(A(i:j))
begin
datatype x,y;
if i=j then return (Ali]);endif ;
if j=i+1 then
Case :
Ali] < Afj]: return (Afj]);
default : return (Afi]);
endcase ;
endif ;
if j>i+1 then

x = max(A(i:(i+])/2);
y = max(A((i+j)/2:);
if x < y then
return (y);
else
return (x);
endif ;
endif ;

end max;

Validation of Algorithms

e Frequently through proof by induction on the input size:
e Recursion
e Divide and conquer
e Greedy method

e Dynamic programming

Analysis of Algorithms

e What it is: estimation of time and space (memory) requirements
e Why needed:
e A priori estimation of performance

e A way for algorithm comparison

e Model:
e Random access memory (RAM)

e Arithmetic operations, comparison operations & boolean operations take constant time

e Load and store take constant time

e Time complexity: # of operations as a function of input size

e Space complexity: # of memory words needed by the algorithm

e Example: The non-recursive max: time = (n-1) comparisons, space = 1

Big O Notation

f(n) = O(g(n)) if 3 no and a constant k such that
f(n) <k x g(n) for all n > nyg

f(n) = Q(g(n)) if 3 ny and a constant k such that
f(n) > k x g(n) for all n > ny

f(n) = ©(g(n)) if f(n) = O(g(n)) and f(n) = Q((g(n))

Theorem: if f(n) = a;,n™ + @pyn™ ! + ... + a1n + ag, then f(n) = O(n™).

proof: f(n) < |f(n)| < l|am|n™ + ... + |ai|n + |ag|. Therefore,
f(n) < (Jag| + 2m=tl L oy < (g, |+ ag| + |aol)n™ for all n.

Letting k£ = |ap| + ... + |a1] + |ao], it follows that f(n) < kn™, and hence f(n) = O(n™).
Method to Compute Time
e Assignement, single arithmetic and logic oprations, comparisons: Constant time
e if then else : Time of the body

e while -for -loop : If it loops n times and each iteration takes time t, then the time is nt.

If the i-th iteration takes ¢;, then the time is > 7", ¢;.

e Time of the algorithm: sum of the times of the individual statements

Method to Compute Space

7

e Single variables: Constant space

e Arrays (1:n): n

e Arrays (1:n,1:m): nxm

e Stacks and queues: maximum size to which the stack/queue grows

Stirling’s Approximation

n! & /2mn(2)"

