

Foundation Engineering

Bassam Z. Mahasneh (PhD.)
Professor (full)
Civil and Environmental Eng. Dept.
Mutah University

Bearing Capacity of

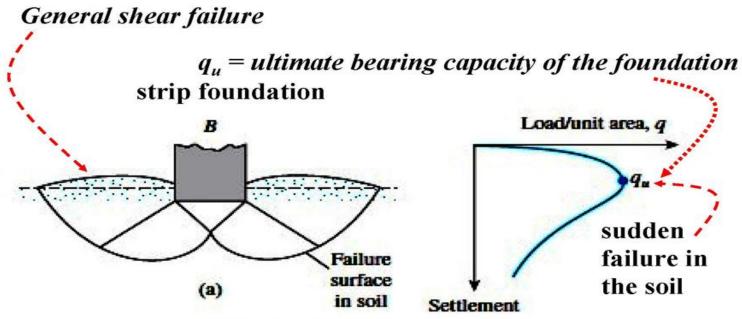
Shallow Foundations

Introduction

To perform satisfactorily, shallow foundations must have two main characteristics:

- They have to be safe against overall shear failure in the soil that supports them.
- They cannot undergo excessive displacement, or settlement. (The term excessive is relative, because the degree of settlement allowed for a structure depends on several considerations.)
- The load per unit area of the foundation at which shear failure in soil occurs is called the *ultimate bearing capacity*

General Concept



local shear failure in soil.

the failure surface in the soil will gradually extend outward from the foundation with a large increase of settlement

B

first failure load

Load/unit area, q

foundation

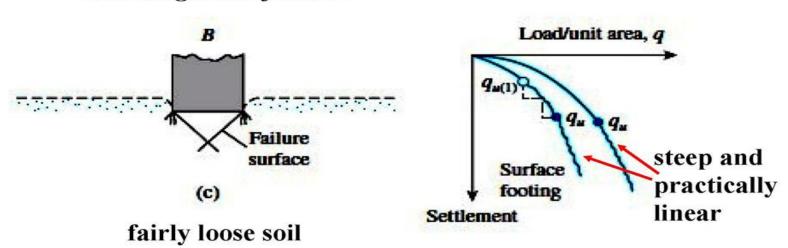
movement of the foundation

will be accompanied

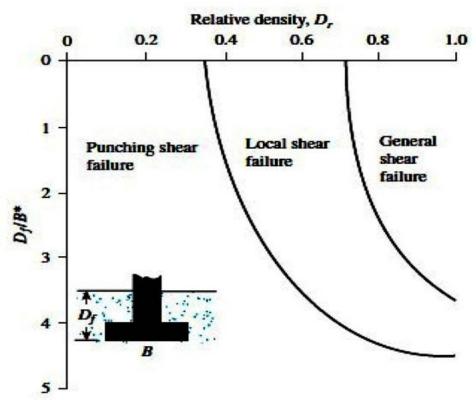
sand or clayey soil of medium compaction

will be accompanied by sudden jerks

Punching shear failure.



Modes of foundation failure in sand (Vesic, 1973)



 $D_r =$ relative density of sand

 D_f = depth of foundation measured from the ground surface

$$B^* = \frac{2BL}{B+L}$$

where

B =width of foundation

L = length of foundation

(Note: L is always greater than B.)

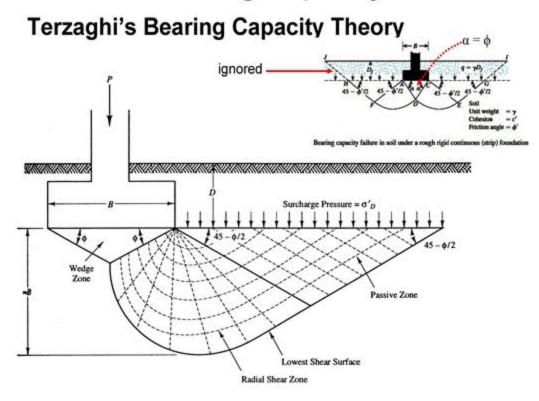
For square foundations, B = L;

for circular foundations, B = L = diameter

$$B^{\bullet} = B$$

General Guidelines

- Footings in clays general shear
- Footings in Dense sands ($D_r > 67\%$) -general shear
- Footings in Loose to Medium dense (30% < D_r < 67%) Local Shear
- Footings in Very Loose Sand ($D_r < 30\%$)-punching shear



Assumptions

- D ≤ B
- No sliding between footing and soil
- soil: a homogeneous semi-infinite mass
- general shear failure
- footing is very rigid compared to soil

Terzaghi Bearing Capacity Formulas For Continuous foundations:

$$q_{ult} = c'N_c + \sigma'_{zD}N_q + 0.5\gamma'BN_{\gamma}$$

For Square foundations:

$$q_{ult} = 1.3c'N_c + \sigma'_{zD}N_q + 0.4\gamma'BN_{\gamma}$$

For Circular foundations:

$$q_{ult} = 1.3c'N_c + \sigma'_{zD}N_q + 0.3\gamma'BN_{\gamma}$$

$$N_c = \frac{N_q - 1}{\tan \phi'}$$
 when $\phi' > 0$

$$Nc = 5.7$$
 when $\phi' = 0$

$$N_q = \frac{a_\theta^2}{2\cos^2(45 + \phi'/2)}$$

$$a_{\theta} = \exp\left[\pi(0.75 - \phi'/360) \tan \phi'\right]$$

$$N_{\gamma} = \frac{\tan \phi'}{2} \left(\frac{K_{p\gamma}}{\cos^2 \phi'} - 1 \right)$$

Terzaghi Bearing Capacity Factors

For foundations that exhibit the local shear failure mode in soils, Terzaghi suggested the following modifications

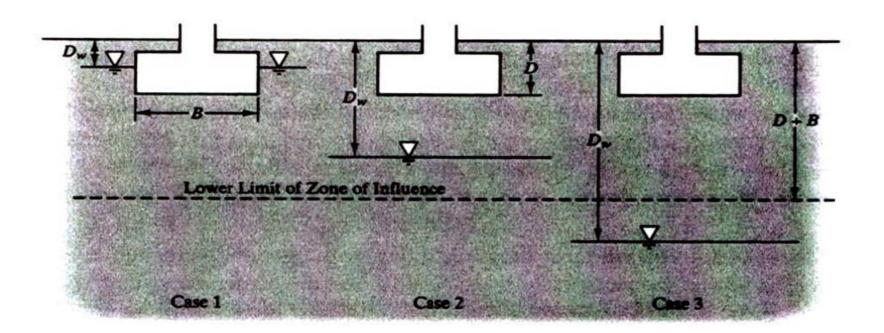
$$q_u = \frac{2}{3}c'N'_c + qN'_q + \frac{1}{2}\gamma BN'_{\gamma}$$
 (strip foundation)

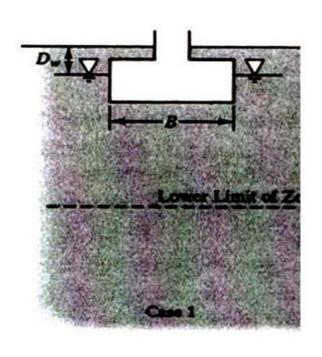
$$q_u = 0.867c'N'_c + qN'_q + 0.4\gamma BN'_{\gamma}$$
 (square foundation)

$$q_u = 0.867c'N'_c + qN'_q + 0.3\gamma BN'_{\gamma}$$
 (circular foundation)

 N_c' , N_q' , and N_γ' , the modified bearing capacity factors, can be calculated by using the bearing capacity factor equations (for N_c , N_q , and N_γ , respectively) by replacing ϕ' by $\overline{\phi}' = \tan^{-1}(\frac{2}{3}\tan\phi')$. The variation of N_c' , N_q' , and N_γ' with the soil friction angle ϕ' is given in Table Next page

Groundwater Table Effect





- 1. Modify σ'_{zD}
- 2. Calculate γ' as follows:

$$\gamma' = \gamma_b = \gamma - \gamma_w$$

The General Bearing Capacity Equation

- The previous ultimate bearing capacity equations
 - do not address the case of rectangular foundations (0<B/L<1)
 - do not take into account the shearing resistance along the failure surface in soil above the bottom of the foundation
 - Do not take the load inclination on the foundation
- To account for all these shortcomings, Meyerhof (1963) suggested the following form of the general bearing capacity equation:

$$q_u = c'N_cF_{cs}F_{cd}F_{ci} + qN_qF_{qs}F_{qd}F_{qi} + \frac{1}{2}\gamma BN_\gamma F_{\gamma s}F_{\gamma d}F_{\gamma i}$$

In this equation:

```
c' = cohesion
```

q = effective stress at the level of the bottom of the foundation

 $\gamma =$ unit weight of soil

B =width of foundation (= diameter for a circular foundation)

 F_{cs} , F_{qs} , $F_{\gamma s} =$ shape factors

 F_{cd} , F_{qd} , F_{rd} = depth factors

empirical factors

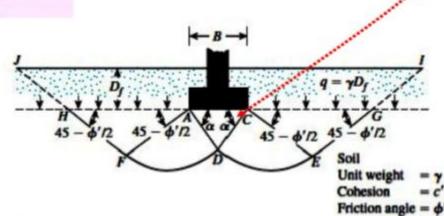
 F_{ci} , \dot{F}_{qi} , $\dot{F}_{\gamma i}$ = load inclination factors N_c , N_q , N_{γ} = bearing capacity factors

Bearing Capacity Factors

$$N_q = \tan^2\left(45 + \frac{\phi'}{2}\right)e^{\pi \tan \phi'}$$

$$N_c = (N_q - 1)\cot\phi'$$

$$N_{\gamma} = 2(N_q + 1)\tan\phi'$$



 $\alpha = 45 + \phi/2$

Bearing capacity failure in soil under a rough rigid continuous (strip) foundation

Shape, Depth, Inclination Factors

Factor	Relationship	Reference
Shape	$F_{cs} = 1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right)$	DeBeer (1970)
	$F_{qs} = 1 + \left(\frac{B}{L}\right) \tan \phi'$	
	$F_{\gamma s} = 1 - 0.4 \left(\frac{B}{L}\right)$	

Depth Hansen (1970) For $\phi = 0$: $F_{cd} = 1 + 0.4 \quad \tan^{-1}$ $F_{qd} = 1$ $F_{cd} = F_{qd} - \frac{1 - F_{qd}}{N_c \tan \phi'}$ $F_{qd} = 1 + 2 \tan \phi' (1 - \sin \phi')^2 \tan^{-1}$ $F_{yd} = 1$

Depth

$$\frac{D_f}{R} \le 1$$

Hansen (1970)

For
$$\phi = 0$$
:

$$F_{cd} = 1 + 0.4 \left(\frac{D_f}{B}\right)$$

$$F_{qd} = 1$$

For
$$\phi' > 0$$
:

$$F_{cd} = F_{qd} - \frac{1 - F_{qd}}{N \tan \phi'}$$

$$F_{qd} = 1 + 2 \tan \phi' \left(1 - \sin \phi'\right)^2 \left(\frac{D_f}{B}\right)$$

$$F_{yd} = 1$$

Inclination

$$F_{ci} = F_{qi} = \left(1 - \frac{\beta^{\circ}}{90^{\circ}}\right)^2$$

$$F_{\gamma i} = \left(1 - \frac{\beta}{\phi'}\right)$$

 β = inclination of the load on the foundation with respect to the vertical

Meyerhof (1963); Hanna and Meyerhof (1981)

Allowable Bearing Capacity

gross allowable load-bearing capacity

$$q_{all} = \frac{q_u}{F}$$
 F Factor of safety

Net allowable load-bearing capacity

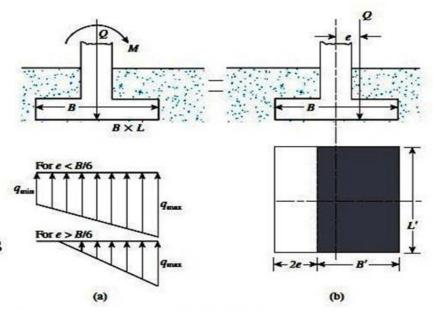
$$q_{all(net)} = \frac{q_u - q}{F}$$

$$q_u - q = q_{u(net)}$$

$$q = \gamma Df$$

Eccentrically Loaded Foundations

- foundations may subjected to moments in addition to the vertical load, as shown in Figure.
- In such cases, the distribution of pressure by the foundation on the soil is not uniform.



Eccentrically loaded foundations

$$q_{\text{max}} = \frac{Q}{BL} + \frac{6M}{B^2L} \longrightarrow q_{\text{max}} = \frac{Q}{BL} \left(1 + \frac{6e}{B} \right)$$

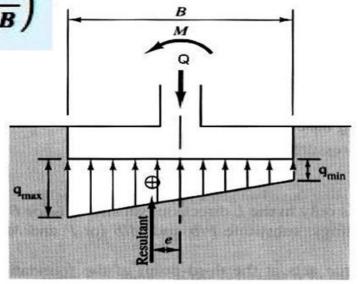
$$q_{\min} = \frac{Q}{BL} - \frac{6M}{B^2L} \longrightarrow q_{\min} = \frac{Q}{BL} \left(1 - \frac{6e}{B} \right)$$

where

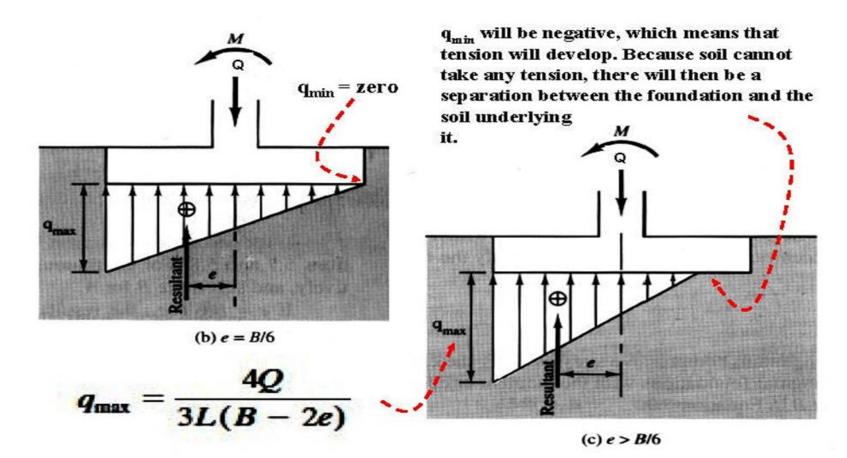
Q = total vertical load

M =moment on the foundation

$$e = \frac{M}{O}$$
 eccentricity



(a) e < B/6



Ultimate Bearing Capacity under Eccentric Loading—One Way Eccentricity

- Effective Area Method (Meyerhoff, 1953)
- Step 1. Determine the effective dimensions of the foundation

$$B' = \text{effective width} = B - 2e$$

 $L' = \text{effective length} = L$

Note that if the eccentricity were in the direction of the length of the foundation, the value of L' would be equal to L-2e. The value of B' would equal B. The smaller of the two dimensions (i.e., L' and B') is the effective width of the foundation.

Step 2. the ultimate bearing capacity:

$$q'_{u} = c'N_{c}F_{cs}F_{cd}F_{ci} + qN_{q}F_{qs}F_{qd}F_{qi} + \frac{1}{2}\gamma B'N_{\gamma}F_{\gamma s}F_{\gamma d}F_{\gamma i}$$

To evaluate F_{cs} , F_{qs} , and $F_{\gamma s}$, with effective length and effective width dimensions instead of L and B, respectively. To determine F_{cd} , F_{qd} , and $F_{\gamma d}$, do not replace B with B'.

Step 3. The total ultimate load that the foundation can sustain is

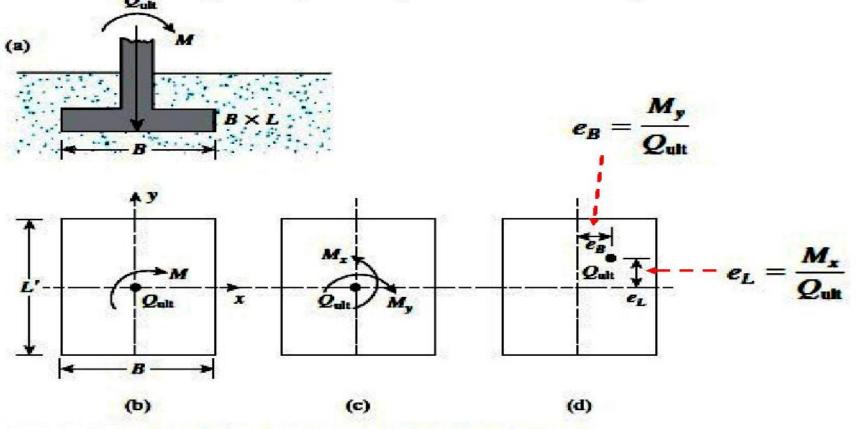
$$Q_{\rm ult} = q'_{u} (B') (L')$$

where A' = effective area.

Step 4. The factor of safety against bearing capacity failure is

$$FS = \frac{Q_{uh}}{Q}$$

Bearing Capacity—Two-way Eccentricity



Analysis of foundation with two-way eccentricity

$$Q_{ult}=q'_uA'$$

where $q'_u=c'N_cF_{cs}F_{cd}F_{ci}+qN_qF_{qs}F_{qd}F_{qi}+\frac{1}{2}\gamma B'N_\gamma F_{\gamma s}F_{\gamma d}F_{\gamma i}$
and $A'=$ effective area $=B'L'$

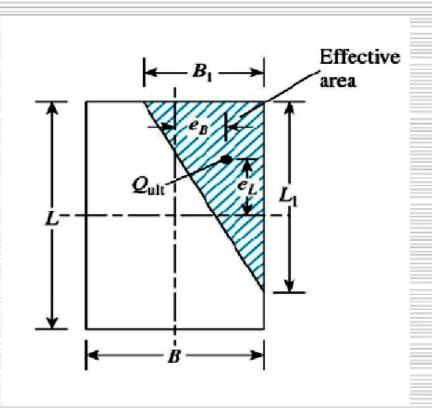
As before, to evaluate F_{cs} , F_{qs} , and $F_{\gamma s}$ we use the effective length L' and effective width B' instead of L and B, respectively.

To calculate F_{cd} , F_{qd} , and $F_{\gamma d}$, we do not replace B with B'.

In determining the effective area A', effective width B', and effective length L', five possible cases may arise

- Depending on loading conditions two way eccentricity is analyzed one of five ways.
 - 1. e_L/L >= 1/6 and e_B/B >= 1/6
 - 2. e_I/L < 1/2 and e_B/B < 1/6
 - 3. e_L/L < 1/6 and e_B/B < 1/2
 - 4. e_I/L < 1/6 and e_B/B < 1/6
 - 5. Circular footing always 1 way

Case 1 e_L/L >= 1/6 and e_B/B >= 1/6



$$B_{1} := B \cdot \left(1.5 - \frac{3 e_{B}}{B} \right)$$

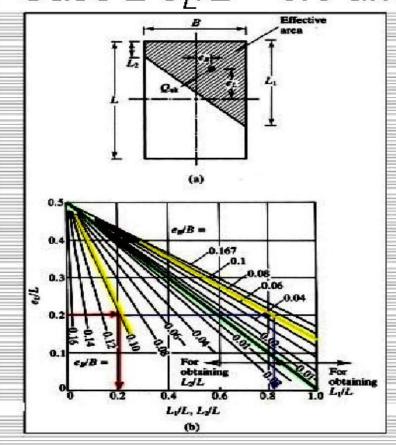
$$L_{1} := L \cdot \left(1.5 - \frac{3 e_{L}}{B} \right)$$

$$A' = \frac{1}{2}B_{1} \cdot L_{1}$$

 $L' = larger of B_1 or L_1$

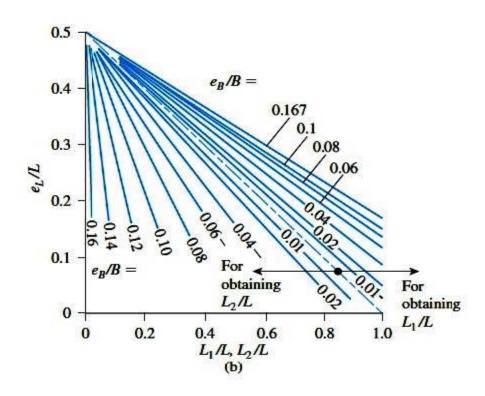
SO B' = A'/L'

Case 2 e_L/L < 0.5 and 0 < e_B/B < 1/6



$$A' = \frac{1}{2}(L_1 + L_2)B$$

 $L' = larger of L_1 or L_2$
 $B' = A'/L'$

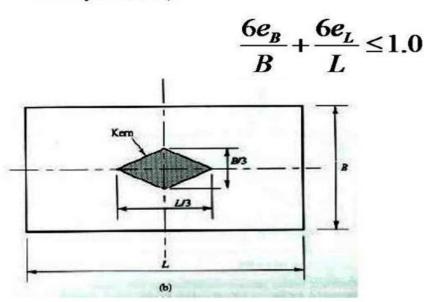


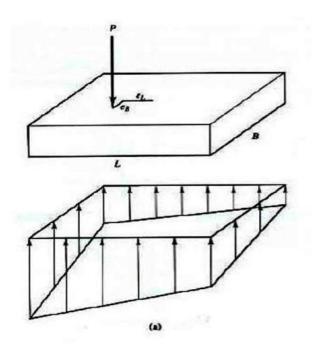
• Case 3 e_L/L < 1/6 and 0 < e_B/B < 0.5



$$q = \frac{Q}{A} \left(1 \pm 6 \frac{e_B}{B} \pm 6 \frac{e_L}{L} \right)$$

For contact pressure to remain (+) ve everywhere,





BEARING CAPACITY FROM SPT

 Several papers have been published that provide statistical data that predict the bearing capacity of footings whilst controlling their settlement to 1 inch. The data is based on the results of SPTs with a correction to 70%, that is N₇₀. The allowable bearing capacity can be provided on a preliminary basis from,

$$q_{all} = \frac{N_{70}}{0.04} \left(1 + 0.33 \frac{D_f}{B} \right) \quad \text{if } B \le 1.2 \, m$$

$$q_{all} = \frac{N_{70}}{0.06} \left(\frac{B + 0.3}{B}\right)^2 \left(1 + 0.33 \frac{D_f}{B}\right) \quad if \quad B \ge 1.2 \, m$$

Bearing Capacity using CPT

$$q_c \sim 0.8N_q \sim 0.8N_\gamma$$

For Granular Soils:

strip footings
$$q_{ut} = 28 - 0.0052(300 - q_c)^{1.5} \frac{kg}{cm^2}$$

square footings
$$q_{ult} = 48 - 0.009(300 - q_c)^{1.5} \frac{kg}{cm^2}$$

For Cohesive Soils:

strip footings
$$q_{uh} = 2 + 0.28q_c \frac{kg}{cm^2}$$

The End